1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
| import os, sys, glob, argparse import pandas as pd import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt
import time import cv2 from PIL import Image from sklearn.model_selection import train_test_split, StratifiedKFold, KFold
import torch torch.manual_seed(0) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = True
import torchvision.models as models import torchvision.transforms as transforms import torchvision.datasets as datasets import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable
from torch.utils.data import Dataset import albumentations as A
train_path = glob.glob('./苹果病害图像识别挑战赛公开数据/train/*/*') test_path = glob.glob('./苹果病害图像识别挑战赛公开数据/test/*')
np.random.shuffle(train_path) np.random.shuffle(test_path)
DATA_CACHE = {} class XunFeiDataset(Dataset): def __init__(self, img_path, transform=None): self.img_path = img_path if transform is not None: self.transform = transform else: self.transform = None def __getitem__(self, index): if self.img_path[index] in DATA_CACHE: img = DATA_CACHE[self.img_path[index]] else: img = cv2.imdecode(np.fromfile(self.img_path[index], dtype=np.uint8), -1) DATA_CACHE[self.img_path[index]] = img if self.transform is not None: img = self.transform(image = img)['image'] if self.img_path[index].split('\\')[1] in ['d1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9']: label = ['d1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9'].index(self.img_path[index].split('\\')[1]) else: label = -1 img = img.transpose([2,0,1]) return img, torch.from_numpy(np.array(label)) def __len__(self): return len(self.img_path)
class XunFeiNet(nn.Module): def __init__(self,l=None): super(XunFeiNet, self).__init__() model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT) model.avgpool = nn.AdaptiveAvgPool2d(1) model.fc = nn.Linear(512, 9) if l!=None: model=model.load_state_dict(torch.load('model1.pth')) self.resnet = model def forward(self, img): out = self.resnet(img) return out
def train(train_loader, model, criterion, optimizer): model.train() train_loss = 0.0 for i, (x, target) in enumerate(train_loader): x = x.cuda(non_blocking=True) target=target.float() target = target.cuda(non_blocking=True)
output = model(x) loss = criterion(output, target.long())
optimizer.zero_grad() loss.backward() optimizer.step()
if i % 20 == 0: print('Train loss', loss.item()) train_loss += loss.item() return train_loss/len(train_loader) def validate(val_loader, model, criterion): model.eval() val_acc = 0.0 with torch.no_grad(): end = time.time() for i, (x, target) in enumerate(val_loader): x = x.cuda() target=target.float() target = target.cuda()
output = model(x) loss = criterion(output, target.long()) val_acc += (output.argmax(1) == target).sum().item() return val_acc / len(val_loader.dataset)
def predict(test_loader, model, criterion): model.eval() val_acc = 0.0 test_pred = [] with torch.no_grad(): end = time.time() for i, (x, target) in enumerate(test_loader): x = x.cuda() target=target.float() target = target.cuda()
output = model(x) test_pred.append(output.data.cpu().numpy()) return np.vstack(test_pred)
train_loader = torch.utils.data.DataLoader( XunFeiDataset(train_path[:-1000], A.Compose([ A.RandomRotate90(), A.Resize(256, 256), A.RandomCrop(224, 224), A.HorizontalFlip(p=0.5), A.RandomBrightnessContrast(p=0.5), A.RandomBrightnessContrast(p=0.5), A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) ), batch_size=30, shuffle=True, num_workers=4 )
val_loader = torch.utils.data.DataLoader( XunFeiDataset(train_path[-1000:], A.Compose([ A.Resize(256, 256), A.RandomCrop(224, 224), A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) ), batch_size=30, shuffle=False, num_workers=4 )
test_loader = torch.utils.data.DataLoader( XunFeiDataset(test_path, A.Compose([ A.Resize(256, 256), A.RandomCrop(224, 224), A.HorizontalFlip(p=0.5), A.RandomBrightnessContrast(p=0.5), A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) ), batch_size=2, shuffle=False, num_workers=4 )
model = XunFeiNet()
model = model.to('cuda') criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.AdamW(model.parameters(), 0.00005)
if __name__ == '__main__': for i in range(2): print(i,'开始') train_loss = train(train_loader, model, criterion, optimizer) val_acc = validate(val_loader, model, criterion) train_acc = validate(train_loader, model, criterion)
print(train_loss, train_acc, val_acc) torch.save(model.state_dict(), 'model1.pth') pred = None
for _ in range(10): if pred is None: pred = predict(test_loader, model, criterion) else: pred += predict(test_loader, model, criterion)
submit = pd.DataFrame( { 'uuid': [(x.split("\\")[-1]).split("/")[-1] for x in test_path], 'label': [['d1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9'][x] for x in pred.argmax(1)] })
submit = submit.sort_values(by='uuid') submit.to_csv('submit1.csv', index=None)
|